
Contract No. IST 2005-034891

Hydra
Networked Embedded System middleware for

Heterogeneous physical devices in a distributed architecture

D4.11 Consolidated Embedded Architecture Report

Integrated Project
SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium 30 September, 2010- version 1.0
Lead Contractor: Fraunhofer FIT

Project co-funded by the European Commission
within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Public

Hydra

Document File: D4.11 Consolidated Embedded Architecture Report
Work Package: WP4
Task: T4.1-T4.5
Document Owner: Klaus Marius Hansen (UAAR)

Document history:
Version Authors Date Changes Made
1.0 Klaus Marius Hansen 2010-09-30 Final version based on internal

reviews
0.9 Klaus Marius Hansen,

Mads Ingstrup, Weishan
Zhang

2010-09-29 Readying for review

0.8 Klaus Marius Hansen 2010-09-28 Adaptation from ongoing jour-
nal article

Internal review history:
Reviewed by Date Comments
Marco Jahn (FIT) 2010-09-30 Minor changes. Approved with

comments
Peeter Kool (CNET) 2010-09-30 Approved with comments

Version 1.0 2 of 35 30 September, 2010

Contents

1 Introduction . 7
2 Architectures for Self-Management . 9
2.1 Background and Related Work . 9
2.2 The Hydra 3L Architectural Style . 10

2.2.1 Objectives . 10
2.2.2 Constraints . 11

3 Design of Self-Management in Hydra . 14
3.1 Component Control . 14
3.2 Change Management . 16
3.3 Goal Management . 19
4 Implementing a Self-Managed Application . 23
4.1 Implementing the Component Control Layer 24
4.2 Implementing the Change Management Layer 24
4.3 Implementing the Goal Management Layer 24
5 Evaluation . 26
5.1 Ontology-Related Performance . 26
5.2 Component-Related Performance . 29
6 Related Work . 31
7 Conclusions . 32

3

List of Figures

2.1 Three Layer Architecture Model for Self-Management 10
2.2 The conceptual relationship between the middleware enabling self-

management, and the systems built with it. 11
2.3 The relationships between the constraints in the architectural style and the

design objectives they affect. 12

3.1 Hydra Self-Management System Model . 14
3.2 WSDL description of thermometer service . 15
3.3 OWL description of thermometer device . 15
3.4 State machine for thermometer device . 16
3.5 OWL description of state machine for thermometer device 16
3.6 An ASL Script . 16
3.7 Deployment View of Component Control Layer 17
3.8 Component & Connector View of Component Control Layer 17
3.9 SeMaPS ontologies . 18
3.10 SWRL plan example . 18
3.11 Component & Connector View of Change Management Layer 19
3.12 Deployment View of Change Management Layer 19
3.13 An AQL Query . 20
3.14 PDDL definition of the “undeploy” ASL operation 21
3.15 PDDL definition of planning problem . 21
3.16 Component & Connector View of Goal Management Layer 22
3.17 Deployment View of Goal Management Layer 22

4.1 Deployment in the TH03 scenario . 23
4.2 Final TH03 deployment. Gray components are tailored/specific to the appli-

cation . 25

4

List of Tables

5.1 Performance consequences of ontology complexity 27
5.2 Performance after using rule grouping . 27
5.3 Optimizer Performance . 28
5.4 Component Performance . 29

5

Executive Summary

This deliverable reports on the consolidated work of WP4 of the Hydra project. As such the
deliverable presents both new and previous development, and aims to present a coherent
view of what has been achieved. Since this deliverable is intended to give such a view and
since quality scientific output has been a priority in the last year of the Hydra project, the
form of the remainder of this deliverable is that of a journal article (intended for submission
to IEEE Transaction of Software Engineering).

In summary, the contributions of WP4 have been in three areas:

• Semantic services for devices. We have realized a web service compiler, that allows
for generation of stubs and skeletons for on-device (web) services. The Service Com-
piler operates on syntactic and semantic service descriptions. The syntactic descrip-
tions describe the operations of a service whereas the semantic descriptions describe
platform characteristics and state-based behaviour of devices

• Semantic self-management. Self-management is an integral part of complex Ambient
Intelligence (AmI) systems. Following a three-layer reference architecture, we realize
self-management by i) component control through the realization of an Architectural
Query Language (AQL) and an Architectural Scripting Language (ASL), ii) change
management through description of systems in a comprehensive set of ontologies,
the Self-Management for Pervasive Service (SeMaPS) ontologies , and related Web
Ontology Language (OWL) and Semantic Web Rule Language (SWRL) reasoning, iii)
goal management through a genetic algorithms-based system state optimizer and an
AI planning-based architectural change planner

• Semantic context and resource awareness. WP4 has developed a comprehensive
set of OWL ontologies, SeMaPS, that describe context and resources of services and
devices. SeMaPS is an integral part of the self-management approach of Hydra. Fur-
thermore, runtime support for resource awareness (through Quality of Service (QoS)
management) has been realized

The developed components are made available as open source.

6

Hydra

1 Introduction

From a qualitative perspective software engineering is concerned with building software of
the best possible quality given the available resources. As systems become more dynamic,
following, e.g., the trend of pervasive and ubiquitous computing, a critical challenge to this
goal is that a system’s use or its execution environment may change. When this happens ei-
ther the relative importance of a system’s quality attributes or the means available to achieve
them may change.

In so far as such changes are predictable, they can be addressed at design time. How-
ever here our scope is with the changes that are not. It is by nature difficult to provide
representative examples of what is unpredictable, but historically we can observe examples
of this: If a flaw is discovered in a security protocol the assumptions about its strength built
into a system need to be changed to retain the desired level of protection; If a system is
moved to a new execution environment, such as another organization with more powerful
devices, its resource constraints may be more liberal while it at the same time faces stricter
security requirements; an IT service provider may have customers with the same functional
requirements but different qualitative requirements depending on market segment; for a
data-mining solutions provider, e.g., an online brokerage may pay a premium for high per-
formance, reliability and security, while e.g. a call centre most likely faces fewer threats and
will be comfortable with slower response times.

This can be handled by adjusting at runtime the qualitative trade-offs made in a system.
Doing so requires the ability to introspect and dynamically change that system’s configura-
tion, as well as to assess through metrics the value of specific quality attributes for possible
configurations. In such self-management processes it is easy to imagine including new ser-
vices or other resources added at runtime. This way it is possible to improve, e.g., a system’s
performance or security beyond the capabilities of the set of resources initially deployed with
the system. In particular, self-management capabilities are becoming important for ambient
and pervasive computing systems as these are becoming more widely deployed. These
systems are often operated as open systems, undergoing dynamic changes where services
may join or leave at any time anywhere and available system resources change dynamically.

Although important, realizing self-management is not an easy task. There are many
aspects that should be considered in a self-management solution for pervasive, embedded
systems, such as sensors to detect system status, actuators to effect needed changes,
corresponding change management schemas and related reasoning. Furthermore, if the
existing schema cannot fulfill a quality of service requirement, planning mechanisms should
be used to help finding the corresponding (near) optimal configuration, and then enabling
this configuration dynamically. Thus, the whole self-management process involves quite a
number of different tasks which can be realized with different technologies. Correspondingly,
a self-management solution must preferably support a hybrid of different technologies on an
architecture level in order to integrate these technologies seamlessly.

In this deliverable, we present an architecture for self-management that enables dynamic
reconfiguration of a system in order to optimize its quality attributes at runtime towards the
goals set for it, even as these goals change. Our architecture is realized in the Hydra
Ambient Intelligence middleware1, an aims at covering a full spectrum of self-management
including:

1. Self-diagnosis for devices/services, systems, and applications, including device/ser-
vice status monitoring, global resource consumption monitoring, and suggestions for

1http://www.hydramiddleware.eu

Version 1.0 7 of 35 30 September, 2010

Hydra

malfunction recovery. Here we use state machines for devices and collection of run-
time context (Zhang and Hansen, 2008b)

2. Self-adaptation including Quality of Service (QoS) based adaptation, for example
switching communication protocols to achieve different level of reliability and perfor-
mance, and energy awareness for adaptation

3. Self-protection based on the QoS requirements, e.g., choosing the most suitable se-
curity strategies for component and service communication in a global manner using
security ontologies (Zhang et al., 2009b)

4. Self-configuration including QoS based configuration for components and energy
awareness for configuration (Zhang and Hansen, 2009)

5. Self-optimization to realize different self-management objectives, based on genetic
algorithms (Zhang and Hansen, 2009)

The remainder of this deliverable is organized as follows. First, we present the back-
ground of self-management, especially architectures for self-management (Chapter 2).
We define an architectural style based on a set of objectives and constraints for self-
management in our setting. We then present our concrete architecture following a three
layered self-management architecture model in Chapter 3. Here, we also present the de-
tailed design of every layer. We show how to develop a self-managed application in Chap-
ter 4. Evaluations regarding performance and scalability of our approach are presented
in Chapter 5. We discuss related work in Chapter 6. Conclusions end this deliverable in
Chapter 7.

Version 1.0 8 of 35 30 September, 2010

Hydra

2 Architectures for Self-Management

2.1 Background and Related Work

The task of architecting self-managing systems can be approached from several conceptual
perspectives, which lead to different architectures.

In one approach, inspiration is sought from nature to build systems with no explicit locus
of control. An example is division of labour in a group of robots inspired by the decentralized
organization of an ant-colony (Labella et al., 2006). This approach has particularly been
applied to autonomic communications (Dobson et al., 2006), but systems based on it are
arguably difficult to engineer (Ottino, 2004).

Another conceptual approach is to leverage traditional Artificial Intelligence (AI) by relying
on explicit representation of plans as a basis for action. Although this might lead to a system
with a central control unit, (e.g., an AI planner as in (Ranganathan and Campbell, 2004))
control can also be distributed such as for BDI agents (Rao and Georgeff, 1995).

A third conceptual approach is inspired by the model used to engineer control sys-
tems (Diao et al., 2005). While it is orthogonal to the two first approaches in that it assumes
nothing about representation of plans, it does require a certain level of centralized control
in so far as measured system output must be compared with the desired output in order to
compute the control measure needed to align the two.

Kramer and Magee (Kramer and Magee, 2007) observe that many early self-managing
systems followed the sense-plan-act architecture (e.g., the Rainbow architecture by Garlan
et al. (Garlan et al., 2004)) in which a system, conceptually at least, continually cycles
through three phases, first sensing the system state, then planning an intervention, and
finally acting out the planned intervention. This was also the case for early architectures for
autonomous robotics (Gat, 1998). However, the sense-plan-act architecture suffered from
difficulties in maintaining precise “world models”. Brook’s subsumption architecture (Brooks,
1991) avoided this by following the slogan “the world is its own best model” and relying
extensively on sensors, but it did not provide sufficient means to handle complexity. The
three layer (3L) architecture described by Gat (Gat, 1998) combines ideas from both, in that
the state-less and low complexity online control algorithms reside in the bottom layer, while
the top layer employs traditional modeling and high-complexity planning algorithms, with the
middle layer acting as interface between the two. This architecture has become a de-facto
standard architecture in autonomous robotics.

The self-management features of Hydra follow the three layered model proposed by
Kramer and Magee (Kramer and Magee, 2007) which is adapted from Gat’s three-layer ar-
chitecture for autonomous robots (Gat, 1998). An overview is shown in figure 2.1. The
lowest layer is the component control layer. It is responsible for retrieving information about
the state of the system, e.g., which/what services exist and what their states are. It is also
responsible for actuating low-level change commands issued from higher layers, e.g., in-
stalling and starting a service. The middle layer is the change management layer. It is
responsible for detecting situations that need to be managed, and to perform that manage-
ment according to pre-determined schemes by issuing commands to the component control
layer. A scheme in this context can be a plan such as a sequence of actions, or a component
such as a Petri Net or rule engine which generates output events/actions as it consumes in-
put events. The top layer is the goal management or planning layer. When a situation is
detected for which there is no applicable pre-existing scheme in the change management
layer, the goal management layer is responsible for computing a new scheme, or plan, e.g.,

Version 1.0 9 of 35 30 September, 2010

Hydra

an AI planner can be used to dynamically generate a reconfiguration plan that is sensitive
to the constraints set by the current system state and policies. Ideally, high-level policies
express which plans to create.

Figure 2.1: Three Layer Architecture Model for Self-Management

2.2 The Hydra 3L Architectural Style

The 3L architecture as proposed by Kramer and Magee is a logical reference model, and
it does as such not constitute a clearly defined style. In the following we remedy that by
defining the concrete styles that are realized by our implementation architecture.

We follow Fielding and Taylor’s (Fielding and Taylor, 2002) definition of an architectural
style as “a coordinated set of architectural constraints that restricts the roles and architec-
tural elements, and the allowed relationships among those elements within any architecture
that conforms to the the style.”. We use the definition with the understanding that the con-
straints in the style are chosen to favour particular architectural objectives.

2.2.1 Objectives

The Hydra-3L style seeks to achieve the following objectives in the system as a whole:

Low coupling/Modifiability The software deployed in a pervasive computing environment
is distributed across a potentially high number of devices. They have different uses and
therefore diverse mobility profiles. This means their availability is unpredictable and that the
software must be robust to unpredicted unavailability of devices. Further, devices frequently
belong to different administrative domains, and thus the maintenance of software running
on them is less coordinated and must be more loosely coupled than what is acceptable in
more traditional (e.g., enterprise information) systems.

Efficiency Although the pace of innovation in hardware is high, particularly for mobile de-
vices, older devices remain in use for long periods. This means that performance is impor-

Version 1.0 10 of 35 30 September, 2010

Hydra

tant, because devices are not always replaced with newer and more powerful ones. More-
over, the improvements in hardware technology are frequently a matter of making devices
smaller rather than more capable, which does not change their properties as deployment
platforms.

Scalability As innovation in hardware makes devices cheaper, smaller and therefore more
numerous, it is important that the middleware can continue to function at larger scales.

Extensible behaviour To increase the range of its potential use, middleware must make
as few assumptions as possible about the application domain while still providing useful
support to application developers. For self-management this implies that the means made
available for developers to specify self-management schemes for their applications must be
expressive and powerful.

2.2.2 Constraints

When defining our architectural style, it is important to be clear about whether the individual
design objectives, constraints and assumptions apply to the middleware itself, or to the set of
applications that can be built with it. Figure 2.2 shows the conceptual relationship between
the two at runtime. We use the term constraint when they apply to our middleware, and

Self-*
Application

Self-*
Middleware

Figure 2.2: The conceptual relationship between the middleware enabling self-management,
and the systems built with it.

the term assumption when the constraint must be satisfied for the system as a whole. The
following constraints and assumptions are set by the Hydra-3L style:

• LS Layered. (constraint).

• PS publish/subscribe (constraint)

• SOA: service oriented (assumption)

• IS - semantic introspection- knowledge about the system is explicitly categorized and
modelled in ontologies to enable automated reasoning (constraint)

• SAR- sensor and actuator based reflection in the component control layer. (constraint)

The relationships between the constraints and the objectives are shown in Figure 2.3 and
explained below.

Layered Organizing the system into layers helps reduce coupling among components
since a layer can only communicate with layers below and immediately above itself. It also
helps managing complexity by introducing a higher level of abstraction, the layer, which
encapsulates well-defined behaviours responsibilities. The three layers are those already
described in section 2.2.

Version 1.0 11 of 35 30 September, 2010

Hydra

Service
Oriented

Publish/
Subscribe

Semantic
Introspection

Layering

Effiency

Scalability

Extensibility

Low
Coupling

Constraint helps achieve design objective

Legend:

negatively impacts

Figure 2.3: The relationships between the constraints in the architectural style and the de-
sign objectives they affect.

Layering may also help achieve efficiency because fast algorithms can possibly be ex-
ecuted independently of slow ones. So real-time performance, implemented in the com-
ponent control layer, is not obstructed by high-complexity algorithms for optimization in the
planning layer.

Publish/Subscribe Using the publish/subscribe communication paradigm for inter-
component communication promotes low coupling among components by decoupling them
with respect to time, space (distribution), and synchronization (Eugster et al., 2003).

Semantic Introspection Self-management algorithms operate on knowledge about the
system under management. In order to manage this in a principled way and facilitate induc-
tive reasoning, introspective information is categorized according to well defined ontologies.

Service-Oriented Architecture Both the system under management and the middleware
follows Service-Oriented Architecture principles. SOA (Erl, 2005) is appealing as it pro-
motes reuse, modularity, composability, componentization and dynamic interoperability in
a standardized way. It enables the architectural principles of service encapsulation, loose
coupling, service autonomy, and service discovery through well-defined service contracts
and service abstraction. This both helps promote modifiability. Further, a number of existing
techniques for self-management assumes a service-oriented architecture.

Sensor- and Actuator-Based Reflection To avoid the complexity and overhead of main-
taining a complete and centralized system model, the introspection implementation should
be based on distributed sensors which can be queried to retrieve only the metadata that is
actually used, and only at times when it is actually required. For the intercession aspect of
reflection (that allow modifications), the actuation of a change must necessarily be based on
actuators present on the local devices where changes should take effect. Requiring these

Version 1.0 12 of 35 30 September, 2010

Hydra

to have a uniform interface makes it simpler to realize principled coordination of system-
wide changes. Supporting runtime changes directly helps to achieve modifiability. It does so
directly as it provides a way to modify a system, but more importantly because it means con-
figuration details can be externalized rather than hard coded into the individual components.
Thus the same components can more easily be used in a variety of configurations.

Version 1.0 13 of 35 30 September, 2010

Hydra

3 Design of Self-Management in Hydra

We describe the architecture of the Hydra self-management architecture using the approach
of Clements et al. (Clements et al., 2003). Our overall system model is shown as a deploy-
ment view in Figure 3.1. The deployment follows Kramer’s and Magee’s model with each
layer deployed on a node, and uses a publish/subscribe implementation (“Event Manager”)
as an implementation of an event connector and it uses an OWL ontology (“SeMaPS”) as a
data connector. We now describe each of the three layers in more detail.

Event
Manager

Change Management

Goal Management

Component Control

SeMaPS

Figure 3.1: Hydra Self-Management System Model

3.1 Component Control

The Component Control layer contains elements that provide the functionality of a system.
As such, in Hydra, it is composed of communicating, domain- and application-specific web
services (Hansen et al., 2008b,c) that internally are structured as components. Typically,
these components are implemented using OSGi (Kriens, P. (Ed), 2005). Furthermore, the
layer contains facilities to interact with upper layers. This interaction is made in two ways:

1. Through sensors, sensing the current state of the functional elements, e.g., reporting
if the current configuration of elements cannot meet design goals

2. Through actuators, allowing upper layers to change the current configuration so as to
meet design goals

Sensors in Hydra may be one of three types:

1. State sensors monitor the internal state of a service. Typically embedded services
fulfill a state machine specification, and we allow state changes to be reported to
upper layers via events

2. Communication sensors monitor the communication between services, i.e., which
messages are sent between which services

Version 1.0 14 of 35 30 September, 2010

Hydra

3. Configuration sensors monitor the configuration of services and components imple-
menting these services in a system

The state and communication sensors are generated by the Hydra Service Com-
piler (Hansen et al., 2008b), the state sensing based on a description of a UML state ma-
chine for the service using OWL. We extend Web Service Description Language (WSDL)
descriptions of web services to reference an OWL description of the service including a state
machine description and use this when generating web services.

Figure 3.2 shows an excerpt of a WSDL description of a thermometer (TH03). The
thermometer service defines an operation getTemperature, but furthermore defines a ref-
erence to a device description (in <hydra:binding/>). In Figure 3.3, an excerpt from the
referenced OWL description of the device is shown. The device ontology also forms a basis
of the SeMaPS ontologies (see Section 3.2).

1 <binding name="TH03SOAP" type="ns:TH03Port">
2 <hydra:binding device="file:./resources/Device.owl#PicoTh03_Indoor"/>
3 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
4 <operation name="getTemperature">

Figure 3.2: WSDL description of thermometer service

The OWL description defines the TH03 device as a Thermometer (which is in itself a
Sensor), references a general device description (in <info/>), a description of the hard-
ware (in <hasHardware/>), and a description of a state-machine for the device service (in
<hasStateMachine/>).

1 <Thermometer rdf:ID="PicoTh03_Indoor">
2 <deviceId rdf:datatype="http://www.w3.org/2001/XMLSchema#string">PicoTh03_Indoor</deviceId>
3 <info rdf:resource="file:./resources/Device.owl#PicoTh03_info"/>
4 <hasHardware rdf:resource="file:./resources/Hardware.owl#PicoTh03_hardware"/>
5 <hasStateMachine rdf:resource="file:./resources/StateMachine.owl#PIcoTh03_Indoor_sm"/>
6 </Thermometer>

Figure 3.3: OWL description of thermometer device

The state-machine for a device service plays a central role in self-management in that
we assume that managed services have a description of (relevant) state changes of the de-
vice service. Our Service Compiler is able to generate support code that enables devices to
publish relevant state changes as described in their state machine. Figure 3.4 shows a sim-
ple state-machine for the thermometer device service: After starting, the thermometer may
go into a measuring loop after which it may stop. For example for self-diagnosis purposes,
it may be relevant to know which of these states a thermometer is in1.

The state-machine is furthermore described in OWL. An excerpt of this state-machine
is shown in Figure 3.5. The description format is essentially that of Dolog (2004) and the
excerpt shows part of the description of the measuring state.

Communication sensing is done through an Architectural Query Language (AQL; (In-
gstrup and Hansen, 2005)) component that allows for upper layers to query the architectural
structure (see Section 3.3).

Finally, actuating is performed by a component implementing the Architectural Scripting
Language (ASL; (Ingstrup and Hansen, 2009; Hansen and Ingstrup, 2010)). An ASL script

1State-based diagnosis is not available in the open source release

Version 1.0 15 of 35 30 September, 2010

Hydra

Figure 3.4: State machine for thermometer device

1 <Simple rdf:ID="PicoTH03_Indoor_Measuring">
2 <doActivity>
3 <Action rdf:ID="getTemperatureIndoor">
4 <Label ...>getTemperature</Label>
5 </Action>
6 </doActivity>
7 <Label ...>Measuring</Label>
8 </Simple>

Figure 3.5: OWL description of state machine for thermometer device

is a sequence of architectural operations, each operating on architectural elements such as
components (deploying, starting, stopping, updating, undeploying). We have implemented
a binding to OSGi that allows for architectural scripts that change an OSGi deployment.
An example ASL script is shown in Figure 3.6. The script initializes the variable aql_s
to reference a service from the AQL component (line 1-3), stops the service (line 4), and
eventually uninstalls the component (line 5). ASL plays an integral role in reconfiguration as
effected by the upper layers in our architecture. We will return to this in Section 3.3.

1 init_device(local);
2 init_component(aql, &SymbolicName=selfstarmanager_aql);
3 init_service(local, aql, aql_s);
4 stop_service(aql_s);
5 undeploy_component(aql);

Figure 3.6: An ASL Script

In summary, Figure 3.7 shows a deployment view of the Component Control layer of
Hydra self-management. Furthermore, Figure 3.8 summarizes a component & connector
view of the interaction among components with focus on the component control layer

3.2 Change Management

The Change Management layer is concerned with reacting to changes in state in the Com-
ponent Control layer, changing parameters and behaviours according to a set of plans. In
our case, plans are realized using OWL ontologies with behaviours represented as SWRL
rules. The set of ontologies used in Hydra is called SeMaPS. The structure of the SeMaPS
ontologies is shown in Figure 3.9. Our SeMaPS runtime implementation uses the Protégé

Version 1.0 16 of 35 30 September, 2010

Hydra

Event
Manager

Change Management

Goal Management

Component Control

:Service

:Component:Component

AQL Sensor

ASL
Interpreter

Figure 3.7: Deployment View of Component Control Layer

!"#$%&

!"#$%&

'$()#*$

'$()#*$

+,-

+,-

+'-

+'-

.)$%&/01%12$(

.)$%&/01%12$(

!31%2$/01%12$4$%&

!31%2$/01%12$4$%&

5$()#*$/67$(1%

789"#53/5&1&$/87:1&$

%6&#;</5&1&$/87:1&$

789"#53/*6%;#28(1%/87:1&$

%6&#;</*6%;#28(1%/87:1&$

%6&#;</5*(#7&

$=$*8&$/5*(#7&

>>>?>95@8$%*$:#12(145?*64

Figure 3.8: Component & Connector View of Component Control Layer

framework2 for implementing OWL ontology support.
Continuing the thermometer example from Section 3.1, a plan may state which commu-

nication protocol a device should use in a given context for reasons of, e.g., power consump-
tion, goodput, or throughput (Sperandio et al., 2008). As an example, an SWRL-based plan
may state that a battery-operated device must use Bluetooth as a communication protocol
if the battery level is below a certain threshold. Such an example is shown in Figure 3.2.
In the example, a Thermometer that i) supports Bluetooth, ii) contains a battery with level
less than 15%, and iii) is in the measuring state, should change its communication protocol
to Bluetooth (for energy use reasons). Plans may easily conflict; consider, e.g., a require-
ment to optimize for energy use coupled with a requirement to optimize for throughput. This
might, e.g., lead to plans simultaneously selecting Bluetooth and UDP for communication in
our example. Resolving such conflicts is the responsibility of the Goal Management layer.
We turn to this in Section 3.3.

In the example above, the execution of the plan is triggered by events from the Compo-
nent Control layer on the state of the device and the battery level of that device. Publication
of the device state is supported by state machine generation whereas the publication of bat-
tery level is an application-specific feature (unless it is connected to a state change). Such
a sequence of events is shown in Figure 3.11. Finally, Figure 3.12 shows a deployment view
of the Change Management layer of Hydra self-management, illustrating that SeMaPS is

2http://protege.stanford.edu/

Version 1.0 17 of 35 30 September, 2010

http://protege.stanford.edu/

Hydra

Figure 3.9: SeMaPS ontologies

device : Thermometer(?device1)

device : hasHardware(?device1, ?hardware) ∧

hardware : supportProtocol(?hardware, ?protocol) ∧

network : name(?protocol, ?name) ∧

swrlb : containsIgnoreCase(?name, ”Bluetooth”) ∧

hardware : primaryBattery(?hardware, ?bat) ∧

hardware : batteryLevel(?bat, ?level) ∧

swrlb : lessThan(?level, 0.15) ∧

device : hasStateMachine(?device1, ?statemachine) ∧

stateMachine : hasStates(?statemachine, ?state) ∧

abox : hasURI(?state, ?uri) ∧

swrlb : containsIgnoreCase(?uri, ”measuring”) ∧

stateMachine : isCurrent(?state, ?cur) ∧

swrlb : equal(?cur, ”true”)

→ sqwrl : select(?device1, ?level) ∧ device : currentCommunicationProtocol(?device1, ”Bluetooth”)

Figure 3.10: SWRL plan example

deployed on the same node as the reasoner component.

Version 1.0 18 of 35 30 September, 2010

Hydra

!"#$"%&%'(!"%')"*

!"#$"%&%'(!"%')"*

+,&%'(-.%./&)

+,&%'(-.%./&)

0&.1"%&)

0&.1"%&)

2&-.32

2&-.32

$45*617(1'.'&(4$8.'&

%"'69:(1'.'&(4$8.'&

4$8.'&

&;&<4'&($*.%1

%"'69:($*.%(<7.%/&

===>=&51&?4&%<&86./).#1><"#
Figure 3.11: Component & Connector View of Change Management Layer

Event
Manager

Change Management

Goal Management

Component Control

SeMaPSReasoner

Figure 3.12: Deployment View of Change Management Layer

3.3 Goal Management

Goal Management is concerned with producing plans for how to reach a goal state given a
high-level goal and a current system state. As such it is the most computationally intensive
layer within the three-layer style.

In our realisation, the Goal Management layer consists of two main components (see
Figure 3.17 for a typical deployment):

1. An Optimizer that will find a goal system configuration given a set of optimization
constraints

2. A Planner that will find a plan (consisting of ASL scripts) for going from a current
system configuration to a goal system configuration

Both components rely on having an up-to-date view of the system configuration. This is
achieved by querying SeMaPS for system state and by listening to events published by the
AQL sensors.

The query in Figure 3.13 illustrates the use of AQL. It provides the author means to select
which parts of the query should be evaluated locally, and which parts globally. A Global mod-
ifier cannot be contained within a Local modifier. The data source, the AQL tables residing
locally on each device, are specified in the innermost pairs of parentheses. The tables in this
case are ClientEndpoints and ServerEndpoints. The ClientEndpoints table contains the

Version 1.0 19 of 35 30 September, 2010

Hydra

1 GLOBAL (
2 NATURALJOIN (
3 LOCAL (
4 RENAME [TargetEndpoint−>Address DeviceID−>ClientDID](ClientEndpoints)
5)
6 LOCAL (
7 RENAME [ServingEndpoint−>Address DeviceID−>ServerDID]
8 (ServerEndpoints)
9)

10)
11)

Figure 3.13: An AQL Query

columns named (DeviceID, ClientID, TargetEndpoint, Protocol). It contains a tuple for
each active client-connection, specifying the device id of the client (DeviceID) the local iden-
tifier of the client on that device (ClientID), the target endpoint for the service (E.g., for TCP
it is the IP address and port number), and the protocol (Protocol). The ServerEndpoints
contains the columns (DeviceID, ServingEndpoint, Protocol). ServingEndpoint denotes
the endpoints on the server on which the service is reachable (for TCP/UDP, that is the
IP address and port number the server socket is bound to). There is one tuple for each
protocol/endpoint combination at which a service is available on this server. In this query,
the tables with endpoints for clients and servers are each prepared locally, renaming the
columns TargetEndpoint and ServingEndpoint, respectively, to Address, and renaming
the device id columns to ClientDID and ServerDID. The rename is done to allow the conve-
nience of using a natural join. The result of the local step is thus, conceptually at least, two
tables with columns named (ClientDID, ClientID, Address, Protocol) and (ServerDID,
Address, Protocol).The natural join of these yields a new table (ClientDID, ServerDID,
ClientID, Address, Protocol) specifying the details of each active channel in the current
system configuration.

The Optimizer uses genetic algorithms to find a solution given a set of constraints (Zhang
et al., 2009b). The formulation of optimization problems are application-specific, but an
example in the thermometer case would be a multi-objective optimization trading of energy
consumption with throughput, the fitness function in the genetic algorithm being based on
specific choices of protocols between service providers and consumers. Our implementation
is based on the JMetal framework3.

Given a current configuration and a goal configuration (as provided by the Optimizer),
the Planner will attempt to construct an ASL script that transforms the current configuration
into the given goal configuration.

Planning problems are described in the Planning Domain Definition Language
(PDDL) (Mcdermott, 2000). A planning problem in PDDL consists of a domain description
and a problem description. The domain description in a self-managed deployment consists
of two parts that describe the operations that may be applied to architectural operations and
as such defines the semantics of ASL operations:

• A generic part with ASL operations that apply to all applications. This includes oper-
ations such as deploying, starting, stopping, updating, undeploying components (In-
gstrup and Hansen, 2009)

• An application-specific part with ASL operations that have specialized semantics for a
domain. In our protocol change example, a set_property operation has been defined

3http://jmetal.sourceforge.net

Version 1.0 20 of 35 30 September, 2010

http://jmetal.sourceforge.net

Hydra

that when set for a client of a service will cause that client to subsequently use the
protocol that the property points to. This is further described in Chapter 4

Figure 3.14 shows the definition of the component undeploy operation in ASL: given a a
device (d) and a component (c), the component may be undeployed from the device if it
already exists at that device (as specified in the :precondition). The results (i.e., the
:effect) is then that all packages that c provides are no longer available on the device, d
(unless other components provide them).

1 (:action UNDEPLOY
2 :parameters (?d ?c)
3 :precondition (and (Component ?c) (Device ?d) (initiated ?d)
4 (At ?d ?c))
5 :effect (and (not (At ?d ?c))
6 (forall (?p)
7 (when (and (Provides ?c ?p)
8 (not (exists (?cm)(and (Component ?cm)
9 (Provides ?cm ?p)

10 (not (= ?c ?cm))
11)
12)
13)
14)
15 (not (AvailableAt ?d ?p))
16)
17)
18)
19)

Figure 3.14: PDDL definition of the “undeploy” ASL operation

Planning problems are also described in PDDL and are defined by the goal that the
Optimizer has provided. A simple excerpt is shown in Figure 3.15. As a result of solving the

1 (define (problem pb1)
2 (:domain deployment)
3 (:objects Cs Cc Ctcp Cudp Ds Dc ...)
4

5 (:init
6 ;; types
7 (Component Cs) (Component Cc) (Component Ctcp) (Component Cudp)
8 (Device Ds)(Device Dc)
9 ...

10 ;; relations
11 (At Ds Cs)(At Dc Cc)(At Ds Ctcp)
12 ...
13 ;;states
14 (initiated Dc)(initiated Ds)
15 ...
16 (:goal
17 (PropertyValue Dc propertykey udptype)
18)
19)

Figure 3.15: PDDL definition of planning problem

planning problem, on the client device (Dc), the following script will need to be executed:

1 set_property(propertykey, udptype);

And correspondingly, on the server device (Ds), the following script installing a UDP protocol
component (Cudp) and starting a corresponding service (sudp) will need to be executed:

Version 1.0 21 of 35 30 September, 2010

Hydra

1 deploy_component(Cudp);
2 init_service(Cudp, Sudp);
3 start_service(Sudp);

These scripts are then communicatied to lower layers, using the Event Manager. This be-
haviour is illustrated in Figure 3.16 and a deployment is shown in Figure 3.17.

!"#$%&'(#$#%&)&$*

!"#$%&'(#$#%&)&$*

+,&$*'(#$#%&-

+,&$*'(#$#%&-

./*0)01&-

./*0)01&-

23#$$&-

23#$$&-

456

456

/78309"'/3#$$0$%'$&&:&:

$;*0<='/3#$$0$%'$&&:&:

;/*0)01&

/78309"';/*0)#3'9;37*0;$'<;7$:

$;*0<=';/*0)#3'9;37*0;$'<;7$:

/3#$'<;-'>"#$%&'9>-0/*

/78309"'>"#$%&'9>-0/*

$;*0<='>"#$%&'9>-0/*

!""# $%"&'(!!'(%%)*+),',)-.*)/0

???@?&89&A7&$>&:0#%-#)9@>;)

Figure 3.16: Component & Connector View of Goal Management Layer

Event
Manager

Change and Goal Management

Component Control

SeMaPSOptimizer

Planner

Figure 3.17: Deployment View of Goal Management Layer

Version 1.0 22 of 35 30 September, 2010

Hydra

4 Implementing a Self-Managed Application

In this chapter, we are going to use a simple scenario (already partially described in pre-
vious chapters) to explain how to build a self-managed application. The application is an
environment monitoring application consisting of a central monitoring node connected to a
number of thermometer services that provide temperature data. The intended deployment
in the scenario is shown in Figure 4.1.

Environment Monitor

Thermometer

TH03 Server

Bluetooth

802.11 (UDP/TCP)802.11 (UDP/TCP)

TH03 Client

OSGi

Thermometer

TH03 Server

Bluetooth

OSGi

OSGi

Figure 4.1: Deployment in the TH03 scenario

The Environment Monitor uses a number of Thermometers to perform its function. The
TH03 Client deployed on the Environment Monitor communicates with a number of TH03
Servers on Thermometers through SOAP. Both the client and the servers are OSGi bundles
deployed in an OSGi container. The connections between the client and servers can be
both IEEE 802.11-based (giving high speed and throughput) and Bluetooth-based (giving
longer battery life). These bundles are intended to run in the Component Control layer while
we are interesting in managing the type of connection used between the client and servers.

Assuming this intended deployment, the steps involved in developing the application are:

1. For the Component Control layer, create the base application. Prepare the application
for being controlled if necessary

2. For the Change Management layer, extend the SeMaPS ontologies to model the ap-
plication concepts and plans

3. For the Goal Management layer, create application-specific optimization problems and
extend the ASL domain descriptions to cover the application if necessary

In the following, we describe what needs to be done for each layer in more detail.

Version 1.0 23 of 35 30 September, 2010

Hydra

4.1 Implementing the Component Control Layer

The TH03 Server is defined using a WSDL file (as described in Section 3.1) and generated
via the Service Compiler. The application developer furthermore needs to develop the actual
functionality, in the TH03 case extracting temperature data to be returned upon request.
To facilitate changing server protocol at runtime, the developer may use a set of Service
Compiler runtime components that replace a standard OSGi HTTP Service implementation,
enabling server protocols to be changed by changing bindings to protocol services. Finally,
the developer needs to publish energy level events using the Event Manager (which may be
accessed by a bridge from the OSGi Event Admin to the Hydra Event Manager).

The TH03 Client is also generated from the WSDL description and the developer needs
to implement the behaviour of the Environment Monitor, including using the right protocol
when requesting temperatures. The client protocol change logic is supported by framework
classes generated by the Service Compiler.

4.2 Implementing the Change Management Layer

To enable reasoning on devices and services from the Energy Monitoring application, the
SeMaPS ontologies are updated with concepts and rules for plans (see Section 3.2).

The change management layer needs to react to battery level change events from the
Component Control layer. To do this a Protocol Reasoner bundle is implemented and de-
ployed (see Figure 4.2). The Protocol Reasoner subscribes to battery level change events,
applies level changes to the SeMaPS ontologies and decides the action to take (e.g., re-
planning) after plans have been executed.

4.3 Implementing the Goal Management Layer

To enable application-specific optimization in the Goal Management layer, a Protocol Opti-
mizer bundle is implemented. The bundle reads the necessary information from SeMaPS (in
this case this includes devices and the current protocol), constructs an optimization problem
class (based on a subclass of JMetal’s Problem), and handles optimization results (from
JMetal optimization).

To define a JMetal problem, a JMetal solution needs to be described. In our applica-
tion, this is a vector of protocol choices per device-device connection involved, and protocol
choice are evaluated based on latency and energy use of a protocol. The problem definition
is then used as the basis for multi-objective optimization by JMetal.

Finally, the planning domain (for defining ASL operations) may need to be extended. In
our case, this involves defining operations for setting protocol properties, resulting in the
installation/activation of protocol bundles (see Section 3.3).

The final deployment is shown in Figure 4.2.

Version 1.0 24 of 35 30 September, 2010

Hydra

Environment Monitor

TH03 Client

Thermometer

TH03 ServerASL AQLASL AQL

Event Manager

Change and Goal Management

Protocol
SeMaPSOptimizerPlanner

Protocol
Optimizer

Reasoner

Protocol
Reasoner

Figure 4.2: Final TH03 deployment. Gray components are tailored/specific to the application

Version 1.0 25 of 35 30 September, 2010

Hydra

5 Evaluation

This section presents an evaluation of the architecture and implementation with respect to
completeness/utility and performance. First, we have realized a concrete family of scenarios
concerned with optimizing the choice of protocols used in a system. The previous sections
of this deliverable give example of this. Secondly, we have investigated that our approach
can perform adequately by reporting measurements of key-tasks for individual components,
and for specific technical scenarios covering several components in the architecture.

5.1 Ontology-Related Performance

As the Semantic Web and its supporting tools and technologies are still in the infancy stage,
it is critical to make sure that we can get acceptable performance in a middleware system.
In this process, a large number of tests and several strategies are adopted.

• Loading ontologies during components initialization and activation as ontologies load-
ing into memory is a slow process

• Initializing static contexts by executing ontology queries in advance

• SWRL rule grouping

We need to investigate whether the complexity of underlying ontologies have big conse-
quences with respect to performance for ontology update and reasoning (including SWRL
inferring and SQWRL query). The complexity of an ontology is measured by several metrics
in terms of defined classes, object properties, data type properties, restrictions (including
cardinality, existential, etc.), total size (bytes) of an ontology or an ontology set, and rules.
Please be noted that usually the update of an ontology property takes only a few millisec-
onds. As we are using the observer pattern to observe ontology property changes, the
inferring of rules will happen immediately after the updates, and the update time will be
more or less the same as the inferring time.

For the performance measurements, the following software platform is used: JVM 1.6.20-
b02, Windows 7 64 bit, the hardware platform is: Thinkpad W700 T9400 2.53G CPU,
7200rpm hard disk, 4G DDR2 RAM. The time measurements are in millisecond. We use
the default java heap memory.

Table 5.2 shows the performance effect of complexities of ontologies. We can see that
there is little performance overhead when the complexity of ontologies increases. For ex-
ample, the number of classes increases almost 8 times, object properties, and data type
properties increase around 2 times, but the average time for inferring a rule varies very little.
Therefore we tend to load the complete SeMaPS ontologies into memory when the self-
management component starts. And from our former experiments, the loading of ontologies
takes more than 3 seconds.

Table 5.2 shows the performance of rule inferring using the rule grouping feature where
only a subset of rules are inferred, using the second ontology setting as in Table 5.2. We
can see that the performance is better (average 3173.4 VS. 2057.77) with around 50%
improvement.

Table 5.3 shows the performance of the optimizer, with maximum evaluations of 2000,
population size 64, and cross over probability as 1. We can see on average it takes around
1.5 seconds to find optimal solutions.

Version 1.0 26 of 35 30 September, 2010

Hydra

Classes object properties data type properties restrictions total size Time1 Time2 Time3 Time4 Time5 Average

73 39 58 46 105745 1841 3607 3482 2643 2413 2797.2
2225 4140 3393 3621 3482 3372.2
2588 4261 3348 2967 3524 3337.6
1910 3194 3405 3394 2964 2973.4
2167 3781 2691 2991 3631 3052.2

606 89 105 154 326,233 2264 3668 3422 3942 3336 3326.4
1707 2653 2653 4555 1228 2559.2
1678 3096 2934 3319 3807 2966.8
2365 4396 4202 3414 4022 3679.8
2352 3906 3890 3068 3459 3335

609 106 154 89 343,494 2184 2214 1326 2240 2526 2098
2137 2902 2153 2685 2341 2443.6
2431 2268 2371 1300 3550 2384
1544 2372 2341 2528 2389 2234.8
1662 2829 1493 2454 2337.2

Table 5.1: Performance consequences of ontology complexity

1778 2090 1420
1685 2465 2124
3090 1530 1733
2059 1919 2544
1560 2184 2396
1404 1638 1789
1778 1702 2923
1513 1544 1747
2231 1155 2461
1654 1935 1933
1749 1778 2175
2242 2543 1874
1951 2480 2653
1889 1997 2873
2606 1825 2601
1817 1856 2091
1684 1950 1881
1965 3182 1903
2193 1794 2318
1279 1684 1950
1314 1561 2360
2052 1701 2225
1754 1529 2150
1790 1856 1894
1779 1374 1994
2528 1202 2720
2044 2029 2772
2154 2560 2030
1780 1654 3183
1966 1779 1871
1327 1373 2400
1701 1592 1872
1827 1639 1686
2107 1561 2014
1795 1998 3332
1624 1561 2331
1826 1498 1877
2627 2076 2617
2154 1780 2152
2793 1810 2029
2216 2653 2146
1861 1499 2128
2263 2154 3018
2230 2247 1950
2162 2435 2104
2247 1903 1732
1889 1764 1713
1545 3137 2528
1873 1934 2275
1842 1811 2199
2246 1857 2684
2570 2279 2742
1873 2496 2901
3190 1826 3181
2587 2387 1904

1993.873 1923.018 2256.418 2057.77

Table 5.2: Performance after using rule grouping

Version 1.0 27 of 35 30 September, 2010

Hydra

952 1654 1201
1277 999 827
873 1092 421

1545 2029 671
1452 1498 1232
1081 1014 1175
858 828 905

1373 826 842
1295 1513 1482
1397 1109 1702
1318 905 718
1078 1062 1457
1498 952 1513
1680 967 1374
1039 1796 733
1264 1045 1467
891 951 1545

1451 1936 1450
968 468 889
796 2184 1466
999 1889 1326

1436 983 1488
1782 952 655
1171 1873 1757
1014 2216 1211
1313 2029 808
1069 1857 983
1108 2200 1654
477 1140 1794

1371 2264 1879
999 2092 1006

1451 2420 1061
1908 2327 1724
1642 1967 1202
1299 1561 1763
959 1530 1248

1162 1983 1873
1606 1562 1553
2622 1859 2056
2999 1656 1940
2987 1108 1357
2316 1639 1169
2013 2107 2215
2123 2341 1673
1974 1202 1343
2319 1577 1123
2019 1187 828
1694 1140 1171
1484 1562 1045
1896 531 1506
1983 1561 1413
1656 1296 1308
1497 1109 1486
1613 1077 1597
1628 1218 1826
1363 1873 1217
1048 921 1364
2439 1656 1427
2298 1014 1165
2392 1311 1190
2361 1343 906
967 1031 702

1447 1280 501
1447 1312 437
1275 764 780
1652 874 806

1518.646 1488.055 1329.291

Table 5.3: Optimizer Performance

Version 1.0 28 of 35 30 September, 2010

Hydra

5.2 Component-Related Performance

We measured performance on individual sub-components of our self-management sys-
tem to locate potential bottlenecks and enable computation of their combined performance.
An optimization cycle is adequate for validation as it involves all components in the self-
management system.

The scenario starts when the reasoner detects a need for reconfiguration, and it involves
the following components executing the following steps:

1. Sensing. AQL is used to retrieve the current system configuration. This is fed through
the Event Manager to the Optimizer

2. Optimization. The Optimizer solves the optimization problem given by the state of the
system and the current fitness function that reflects the current qualitative preferences
for the system

3. Planning. The result of optimization is a desired target configuration. The target config-
uration, along with the current system configuration from step 1 constitutes a planning
problem

4. Actuation. The result of planning is an ASL script transforming the system from its
current configuration to the goal configuration. The result of planning is published
by the planner through the eventmanager, and received by the ASL interpreter which
executes it

The combined execution time for an optimization cycle is thus:

Ttotal = Tsense + Treason + Toptimize + Tplan + Tactuate + 3 · Tevent

Where the 3 ·Tevent is the time required to forward events among the components in between
steps 1 to 4. Table 5.4 lists the measured values for each of the components in the above
formula.

Parameter Value (ms) Measurements Devices
Tsense 66.9 100 4
Treason 2058 55 –
Toptimize 1445 5 –
Tplan 7 20 –
Tactuate 100 20 –
Tevent 20.6 100 4

Table 5.4: Component Performance

Using the numbers in the table yields a total time of 3739 ms, which is within the ac-
ceptable limit for interactive applications. It is clear from the results that improvement to this
number can only be achieved by reducing the time needed for reasoning and optimization,
as the time consumption of the other sub-components of our self-management approach
are insignificant in comparison.

The numbers confirm the soundness of choosing the three layer architecture for self-
management. A key rationale in this architecture is that efficient algorithms should reside in
lower layers. This is indeed the case as the components residing in the component control

Version 1.0 29 of 35 30 September, 2010

Hydra

layer (sensing, actuation) performs significantly faster than the components in the above
layer.

The performance of the planning component appears good, however it should be noted
that planning problems are inherently complex, so it is to be expected that when the planning
problem instances increase in size, the performance of the planner will deteriorate signifi-
cantly. Results of previous experiments show that the planning problems have to reach
a size of more 70 architectural entities in the configurations before planning time exceeds
2000 ms. This confirms the allocation of the planning component to the top-layer, the goal
management layer, along with the optimizer.

Version 1.0 30 of 35 30 September, 2010

Hydra

6 Related Work

Providing self-management features in pervasive computing environments is very attractive
to make pervasive systems more usable and practical. A variety of technologies have been
proposed for this purpose. CARISMA middleware (Capra et al., 2003) explored to use auc-
tion algorithms to dynamically resolve policy conflicts during context changes. Poladian et
al (Poladian et al., 2006) used an analytical approach similar to combinatorial auctions in
the project Aura to adaptively support everyday tasks of users. We are also working on
including this in the self-management planning layer, as auction algorithms can find local
optimal if required. But in general, from our experiences of preliminary tests, we will still use
genetic algorithms as the main approach for finding global optimized solutions as it can find
better quality of solutions with reasonable performance than the auction algorithms.

Genetic algorithms are being used in self-managing systems in which configurations are
encoded as utility functions and where the problem of finding a (Pareto) optimal configuration
becomes a multi-objective optimization problem (Hassan et al., 2008; Rouvoy et al., 2008).
A recent approach within pervasive computing is the MUSIC middleware (Rouvoy et al.,
2009). In MUSIC, components have QoS characteristics and the assumption is that QoS
of a composition can be computed. In contrast to our work, MUSIC focuses on external
Service Level Agreements (SLAs) and the fulfillment of those. Furthermore, it is not clear
whether the proposed design is implemented and how planning will be realized. Besides
the GA optimization engine, an IPP planner is also implemented to resolve the problem on
how to achieve the optimal configuration in our goal management layer.

In Curry and Grace’s work (Curry and Grace, 2008), The Model-View-Controller design
pattern is adopted to improve concerns separation by encapsulating state, analysis, and
realization operations. This MVC pattern improves flexibility, customization, and portability
for self-representation of an autonomic system. We have actually adopted this MVC pattern
in our design and implementation: the models are implemented using OWL ontologies, the
controller parts are the corresponding model manipulation Java classes, the views are the
various self-management schemas encoded with SWRL that are triggered by the updating
of OWL models. This pattern is reinforced in our case by a Repository architecture style,
and a layered architecture style.

The three-layered model was proposed by Kramer and Magee (Kramer and Magee,
2007), and there was no actual implementation details in (Kramer and Magee, 2007). A
followed work is presented in (Sykes et al., 2008). Goals expressed in a temporal logic are
used to generate reactive plans, and then configuration of domain-specific software com-
ponents are configured based on the plan. In our case, we used a convenient IPP planner
to generate the reaction plans to configure software components. We will explore more on
the usage of state machine-based self-management based on our initial work (Zhang and
Hansen, 2008b) and work in (Mostarda et al., 2010). In the future, we are considering to
add an approach based on formal methods to regulate self-management tasks (Zhang et al.,
2009a).

Version 1.0 31 of 35 30 September, 2010

Hydra

7 Conclusions

In this deliverable, we presented the WP4 embedded AmI architecture with focus on
ontology- and context-enabled self-management. The architecture follows a three-layered
approach in which computationally intensive self-management processes reside in upper
layers (the Change Management and Goal Management layers) and in which processes on
the lowest layer (the Component Control layer) may run on embedded devices.

Component Control is enabled by a combination of the Hydra Service Compiler, the
Architectural Scripting Language (ASL) and the Architectural Query Language (AQL), the
two former of which have been developed in Hydra. Change Management is enabled by a
comprehensive set of OWL ontologies, SeMaPS, and related SWRL- and SQWRL-based
reasoning. Change Management is enabled by a combination of a genetic algorithm-based
optimizer and an ADL-based AI planner that generates ASL scripts.

Finally, the approach has been successfully validated for utility and performance through
a set of protocol change-related scenarios.

Version 1.0 32 of 35 30 September, 2010

Bibliography

Brooks, R. A. (1991). Intelligence without representation. Artif. Intell., 47(1-3):139–159.

Capra, L., Emmerich, W., and Mascolo, C. (2003). CARISMA: Context-Aware Reflective
mIddleware System for Mobile Applications. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, pages 929–945.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., and Stafford,
J. (2003). Documenting software architectures: views and beyond. Addison-Wesley,
Boston.

Curry, E. and Grace, P. (2008). Flexible Self-Management Using the Model-View-Controller
Pattern. IEEE software, 25(3):84–90.

Diao, Y., Hellerstein, J. L., Parekh, S., Griffith, R., Kaiser, G. E., and Phung, D. (2005).
A control theory foundation for self-managing computing systems. Selected Areas in
Communications, IEEE Journal on, 23(12):2213–2222.

Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P.,
Saffre, F., Schmidt, N., and Zambonelli, F. (2006). A survey of autonomic communications.
ACM Trans. Auton. Adapt. Syst., 1(2):223–259.

Dolog, P. (2004). Model-driven navigation design for semantic web applications with the uml-
guide. Engineering Advanced Web Applications, In Maristella Matera and Sara Comai
(eds.).

Erl, T. (2005). Service-oriented architecture: concepts, technology, and design. Prentice
Hall PTR Upper Saddle River, NJ, USA.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The many faces of
publish/subscribe. ACM Comput. Surv., 35(2):114–131.

Fielding, R. T. and Taylor, R. N. (2002). Principled design of the modern web architecture.
ACM Trans. Internet Technol., 2(2):115–150.

Garlan, D., Cheng, S. W., Huang, A. C., Schmerl, B., and Steenkiste, P. (2004). Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer, 37(10):46–54.

Gat, E. (1998). On three-layer architectures. Artificial Intelligence and Mobile Robots, pages
195–210.

Hansen, K., Zhang, W., and Ingstrup, M. (2008a). Towards Self-Managed Executable Petri
Nets. In Second IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, 2008. SASO’08, pages 287–296.

33

Hydra

Hansen, K. M. and Ingstrup, M. (2010). Modeling and analyzing architectural change with
alloy. In Shin, S. Y., Ossowski, S., Schumacher, M., Palakal, M. J., and Hung, C.-C.,
editors, SAC, pages 2257–2264. ACM.

Hansen, K. M., Zhang, W., and Fernandes, J. (2008b). OSGi based and Ontology-Enabled
Generation of Pervasive Web Services. In 15th Asia-Pacific Software Engineering Con-
ference, pages 135–142, Beijing, China.

Hansen, K. M., Zhang, W., and Soares, G. (2008c). Ontology-enabled generation of em-
bedded web services. In Proceedings of the 20th International Conference on Software
Engineering and Knowledge Engineering, pages 345–350, Redwood City, San Francisco
Bay, USA.

Hassan, O., Ramaswamy, L., Miller, J., Rasheed, K., and Canfield, E. (2008). Repli-
cation in Overlay Networks: A Multi-objective Optimization Approach. In 4th Interna-
tional Conference on Collaborative Computing: Networking, Applications and Workshar-
ing (COLLABORATECOM-2008), Orlando, FL, USA.

Ingstrup, M. and Hansen, K. M. (2005). A declarative approach to architectural reflection. In
Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP Conference on, pages
149–158.

Ingstrup, M. and Hansen, K. M. (2009). Modeling architectural change: Architectural script-
ing and its applications to reconfiguration. In WICSA/ECSA, pages 337–340. IEEE.

Kramer, J. and Magee, J. (2007). Self-Managed Systems: an Architectural Challenge. In-
ternational Conference on Software Engineering, pages 259–268.

Kriens, P. (Ed) (2005). OSGi Service Platform Core Specification. Release 4. The OSGi
Alliance.

Labella, T. H., Dorigo, M., and Deneubourg, J.-L. (2006). Division of labor in a group of
robots inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst., 1(1):4–25.

Mcdermott, D. (2000). The 1998 ai planning systems competition. AI Magazine, 21(2):35–
55.

Mostarda, L., Sykes, D., and Dulay, N. (2010). A State Machine-Based Approach for Reliable
Adaptive Distributed Systems. In 2010 Seventh IEEE International Conference and Work-
shops on Engineering of Autonomic and Autonomous Systems, pages 91–100. IEEE.

Ottino, J. M. (2004). Engineering complex systems. Nature, 427(6973):399.

Poladian, V., Sousa, J., Garlan, D., Schmerl, B., and Shaw, M. (2006). Task-based adapta-
tion for ubiquitous computing. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, Special Issue on Engineering Autonomic Systems, 36(3).

Ranganathan, A. and Campbell, R. H. (2004). Autonomic pervasive computing based on
planning. In Proceedings of International Conference on Autonomic Computing., pages
80–87.

Rao, A. and Georgeff, M. (1995). BDI agents: From theory to practice. In Proceedings of the
first international conference on multi-agent systems (ICMAS-95), pages 312–319. San
Francisco.

Version 1.0 34 of 35 30 September, 2010

Hydra

Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S. O., Lorenzo, J., Mamelli, A.,
and Scholz, U. (2009). Music: Middleware support for self-adaptation in ubiquitous and
service-oriented environments. In Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P.,
and Magee, J., editors, Software Engineering for Self-Adaptive Systems, volume 5525 of
Lecture Notes in Computer Science, pages 164–182. Springer.

Rouvoy, R., Eliassen, F., Floch, J., Hallsteinsen, S., and Stav, E. (2008). Composing Compo-
nents and Services Using a Planning-Based Adaptation Middleware. LECTURE NOTES
IN COMPUTER SCIENCE, 4954:52–67.

Sperandio, P., Bublitz, S., and Fernandes, J. (2008). Wireless Device Discovery and Testing
Environment. Technical Report D5.9, Hydra Consortium. IST 2005-034891.

Sykes, D., Heaven, W., Magee, J., and Kramer, J. (2008). From goals to components: a
combined approach to self-management. In Proceedings of the 2008 international work-
shop on Software engineering for adaptive and self-managing systems, pages 1–8. ACM.

Zhang, J., Goldsby, H., and Cheng, B. (2009a). Modular verification of dynamically adaptive
systems. In Proceedings of the 8th ACM international conference on Aspect-oriented
software development, pages 161–172. ACM New York, NY, USA.

Zhang, W. and Hansen, K. (2008a). Semantic web based self-management for a pervasive
service middleware. In Second IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, 2008. SASO’08, pages 245–254.

Zhang, W. and Hansen, K. (2009). An Evaluation of the NSGA-II and MOCell Genetic
Algorithms for Self-management Planning in a Pervasive Service Middleware. In 14th
IEEE International Conference on Engineering Complex Computer Systems (ICECCS
2009). IEEE Computer Society Washington, DC, USA. 192-201.

Zhang, W. and Hansen, K. M. (2008b). An OWL/SWRL based Diagnosis Approach in a
Web Service-based Middleware for Embedded and Networked Systems. In The 20th
International Conference on Software Engineering and Knowledge Engineering, pages
893–898, Redwood City, San Francisco Bay, USA.

Zhang, W. and Hansen, K. M. (2008c). Towards self-managened pervasive middleware
using OWL/SWRL ontologies. In HCP-2008 Proceedings, Part II, MRC 2008 – Fifth Inter-
national Workshop on Modelling and Reasoning in Context, pages 1–12.

Zhang, W., Schutte, J., Ingstrup, M., and Hansen, K. M. (November 24-27 2009b). Towards
optimized self-protection in a pervasive service middleware. In 7th International Con-
ference on Service Oriented Computing, Joint ICSOC&ServiceWave 2009 Conference,
pages 404–419, Stockholm, Sweden). Springer LNCS 5900.

Version 1.0 35 of 35 30 September, 2010

	Introduction
	Architectures for Self-Management
	Background and Related Work
	The Hydra 3L Architectural Style
	Objectives
	Constraints

	Design of Self-Management in Hydra
	Component Control
	Change Management
	Goal Management

	Implementing a Self-Managed Application
	Implementing the Component Control Layer
	Implementing the Change Management Layer
	Implementing the Goal Management Layer

	Evaluation
	Ontology-Related Performance
	Component-Related Performance

	Related Work
	Conclusions

